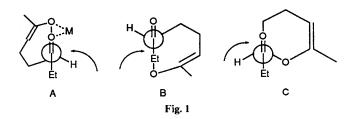

A Short, High-yield, Stereoselective Synthesis of Racemic *exo-* and *endo-*Brevicomin

Jong-Gab Jun * and Dong Gyun Shin

Department of Chemistry, Hallym University, Chunchon 200-702, Korea


Stereoselective reduction and cyclization of 6-methyl-2-propionyl-2,3-dihydro-4H-pyran provides brevicomin in quantitative yield as a 86:14 or a 17:83 mixture of *exo* and *endo* isomers through DIBAH reduction in ether at reflux or $Zn(BH_4)_2$ in the presence of $ZnCl_2$ in ether at 0 °C, respectively.

The *exo* and *endo* isomers of brevicomin are exuded by the frass of the western pine beetle, *Dendroctonus brevicomis*, and the *exo* isomer **4** is known to be a key component of the aggregation pheromone of this destructive pest.¹ The *endo* isomer **5** is a potent inhibitor of the aggregation behaviour of the likewise destructive southern pine beetle.² Several syntheses of brevicomin have been published in the literature.³ In this investigation, we report a stereoselective reduction of 6-methyl-2-propionyl-2,3-dihydro-4*H*-pyran **1** followed by a cyclization in one flask to produce either *exo-* or *endo-* brevicomins (Scheme 1).

For the stereoselective reduction of the ketone 1 which is prepared from methyl vinyl ketone (MVK) dimer,⁴ it is postulated that hydride attack on the ketone occurs from the less encumbered side of the ring methylene or the ring oxygen. Models A, B and C are proposed. A is the Cram chelate rule model,⁵ while B and C correspond to the Cornforth dipolar model⁶ and the Felkin model.⁷ The bridged structure A is expected to control the stereoselectivity when the reagent is capable of chelation with the ring oxygen and the carbonyl oxygen. The *erythro* alcohol 3 could be derived from this chelating structure. Structures B and C are assumed to be important in the absence of chelation to the ring oxygen. The nonchelating structures B and C should favour the *threo* isomer 2 (Fig. 1).

Diisobutylaluminium hydride (DIBAH), $Zn(BH_4)_2$, K- or L-Selectride, LiAlH₄ and NaBH₄ have been applied under several conditions to the reduction of MVK dimer (Table 1) which is

Entry	Reducing agent	Solvent	Temp. (°C)	threo-erythro
1	DIBAH	Et ₂ O	reflux	84:16
2	DIBAH	Et ₂ O	room temp.	82:18
3	DIBAH	Et ₂ O	0	75:25
4	DIBAH	Et ₂ O	-20	68:32
5	DIBAH	Et ₂ O	- 78	68:32
6	DIBAH	CH ₂ Cl ₂	reflux	80:20
7	DIBAH	CH ₂ Cl ₂	room temp.	78:22
8	DIBAH	CH ₂ Cl ₂	-20	65:35
9	DIBAH	CH_2Cl_2	-78	69:31
10	DIBAH	THF	reflux	68:28
11	DIBAH	THF	room temp.	70:30
12	DIBAH	THF	-20	70:30
13	DIBAH	THF	-78	83:17
14	$Zn(BH_4)_2 - ZnCl_2$	Et ₂ O	room temp.	40:60
15	$Zn(BH_4)_2 - ZnCl_2$	Et ₂ O	0	20:80
16	$Zn(BH_4)_2 - ZnCl_2$	Et ₂ O	-78	80:20
17	$Zn(BH_4)_2 - ZnCl_2$	CH,Cl,	room temp.	32:68
18	$Zn(BH_4)_2 - ZnCl_2$	CH ₂ Cl ₂	0	19:81
19	$Zn(BH_4)_2 - ZnCl_2$	CH,Cl,	-78	86:14
20	$Zn(BH_4)_2 - ZnCl_2$	THF	room temp.	39:61
21	$Zn(BH_4)_2 - ZnCl_2$	THF	0	35:65
22	$Zn(BH_{A})_{2}-ZnCl_{2}$	THF	-78	81:19

Table 1 Stereoselective reduction of methyl vinyl ketone dimer

similar to 1. DIBAH is known as a non-chelating reagent⁸ and gives the expected non-chelating product (threo alcohol) in our system as a major isomer (entries 1-13). Solvent and temperature effects were noticed; higher temperature was more effective in diethyl ether (entry 1) or CH₂Cl₂ (entry 6), but lower temperature was favoured in THF (entry 13) for threo selectivity. Also, erythro selectivity is known in the reduction of α,β -epoxy ketones by using $Zn(BH_4)_2$ which can form a chelated transition state.⁹ In our system, only a slight excess of erythro isomer was formed by the $Zn(BH_4)_2$ reduction, but this was much enhanced by the addition of ZnCl₂. erythro-Selectivity was not much improved in DIBAH-ZnCl₂ reduction. At lower temperature (-78 °C), the chelating ability of $Zn(BH_4)_2$ was assumed to be depressed even with $ZnCl_2$ (entries 16, 19, 22). The best erythro selectivity was achieved at 0 °C in diethyl ether (entry 15) or CH_2Cl_2 (entry 18).

The three 2 and erythro 3 alcohols are converted into exo 4 and endo 5 isomers of brevicomin, respectively, by acid ring closure reaction using toluene-*p*-sulphonic acid at reflux.¹⁰ We found that acidic work-up (2 min shaking) of the reduced alcohol with 15% aqueous HCl was enough for the cyclization into brevicomin in quantitative yield.

For the *exo*-brevicomin 4, DIBAH (2 equiv.) was added dropwise to 1 mol. equiv. of the ketone 1 which was dissolved and refluxed in dry ether under anhydrous conditions. After 1 h reflux of this reaction mixture, acidic work-up (15% HCl solution) allowed the isolation of a 86:14 mixture of *exo* 4 and *endo* 5 isomers. The isomeric brevicomins were identified by comparison of their GC, IR and ¹H NMR characteristics with reported values.¹¹

For the endo-brevicomin 5, 1 mol. equiv. of the ketone 1 was added to $ZnCl_2$ (2 equiv.) in dry ether at 0 °C. After being stirred for 1 h at 0 °C, $Zn(BH_4)_2$ (3 equiv.) was slowly added to this reaction mixture and stirred for 2 h at the same temperature. Acidic work-up (15% HCl solution) and extraction with ether of this reduced mixture allowed brevicomin in quantitative yield as a 17:83 mixture of exo 4 and endo 5 isomers.

The present synthesis is by far the simplest to perform and provides the highest yields obtained to date.³

Acknowledgements

The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, 1990.

References

 D. L. Wood, L. E. Browne, B. Ewing, K. Lindahl, W. D. Bedard, P. E. Tilden, K. Mori, G. B. Pitman and P. R. Hughes, *Science*, 1976, 192, 896; R. M. Silverstein, R. G. Brownnlee, T. E. Bellas, D. L. Wood and L. E. Browne, *Science*, 1968, 159, 889; R. M. Silverstein, *J. Chem. Educ.*, 1968, 45, 794.

- 2 J. P. Vite and J. A. A. Renwick, Naturwissenschaften, 1971, 58, 418; T. L. Payne, J. E. Coster, J. V. Richerson, L. J. Edson and E. R. Hart, Environ. Entomol., 1978, 7, 578.
- 3 Y. Noda and M. Kikuchi, *Chem. Lett.*, 1989, 1755; S. Ramaswamy and A. C. Oehlschlager, *J. Org. Chem.*, 1989, 54, 255; H. Redlich, W. Bruns, W. Francke, V. Schurig, T. L. Payne and J. P. Vite, *Tetrahedron*, 1987, 43, 2029; A. Yasufoglu, S. Antons and H. Scharf, *J. Org. Chem.*, 1986, 51, 3485; K. Mori and Y. B. Seu, *Tetrahedron*, 1985, 41, 3429 and references therein.
- 4 P. Chaquin, J-P. Morizur and J. Kossanyi, J. Am. Chem. Soc., 1977, 99, 903.
- 5 D. J. Cram and K. R. Kopecky, J. Am. Chem. Soc., 1959, 81, 2748.
- 6 J. W. Cornforth, R. H. Cornforth and K. K. Mathew, J. Chem. Soc., 1959, 112.
- 7 M. Cherest, H. Felkin and N. Prudent, Tetrahedron Lett., 1968, 2199.
- 8 T. Nakata, T. Tanaka and T. Oishi, Tetrahedron Lett., 1981, 4723.
- 9 S. V. Frye and E. L. Eliel, J. Am. Chem. Soc., 1988, 110, 484.
- 10 T. Cohen and M. Bhupathy, *Tetrahedron Lett.*, 1983, 4163; T. Cohen and J. R. Matz, J. Am. Chem. Soc., 1980, **102**, 6900.
- 11 R. M. Silverstein, J. Chem. Ed., 1968, 45, 794; T. E. Bellas, R. G. Brownlee and R. M. Silverstein, Tetrahedron, 1969, 25, 5149; K. Mori, Tetrahedron, 1974, 30, 4223.

Paper 0/05638C Received 14th December 1990 Accepted 10th January 1991